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About Lilia Roo
● Furry since 2018

● Wrote transformation stories!
● Software engineer

● Graduated 2023, but been employed in 
industry for 5+ years

● Cut teeth via small FOSS contributions 
beforehand

● Maintainer of sewifurs.org since 2021
● Maintainer of Xfburn since 2022
● Developer for Weasyl since 2024
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Problem statement
Online-only 
games, or beloved 
versions of them, 
will go defunct...

...but we can 
bring them back 
through science!



  

Outline

Using an example project:
● Decompilation
● Renaming symbols
● Cross-reference code with fan documentation

● Reverse engineering the network protocol
● Writing our new server!



  

Before you begin!

Every project is different
● Different programming languages
● Different libraries
● Some games are obfuscated
● Some games hate debuggers
● Some games have anti-cheat
● Does fan-written documentation exist?



  

Our example project

Neopets Mobile
● J2ME, 2006 – 2009
● Developer: In-Fusio
● Could sync progress 

with main website
● Only way to access 

Lutari Island!



  

Lutari 
Island



  

Decompilation!
● Used Vineflower

(formerly Quiltflower)
● Bytecode → Source
● Symbols are 

obfuscated :(
● This obfuscation uses 

normally-invalid duplicate 
names!



  

Decompilation!
● Ask decompiler to 

assign everything a 
unique name instead

● The exact flag depends 
on your tools

● Easier to work with!



  

Starting renaming

I gotta figure these out? Where do I even begin?
● Look for literal strings in functions
● Mid-method log messages can help greatly

● Look for short, ‘leaf’ functions
● Can more easily give a name based on what it does

● Look for recognizable constants
● Check the game’s wiki; maybe it’s a value for a mechanic



  

Starting renaming

It’s like a puzzle, and you’re solving it piece-by-piece



  

Fan documentation helps!

Mystery Island Training School guide
From Jellyneo

Now we can give names to these!



  

Networking
● Search for URLs, IP addresses, etc.
● Depending on the game, might be read from a config file, 

might be hardcoded
● Search for socket read/write
● Depends on language, libraries, etc.

● Look at the call stack and referenced classes
● You found the networking code!



  

Networking

This game has a hardcoded endpoint



  

What now?
● Need to figure out how the protocol works

● Is it HTTP? Raw TCP? Raw UDP?
● Is it synchronous request-response? Something else?
● Is there a separate auth step?
● What is the data format?

● Study the decompilation for a bit, taking notes
● To get a real sample, create a simple server that just 

reads from the socket and logs requests



  

Basic server quick notes
● If the game hits a specific domain, route that to 

127.0.0.1 via your hosts file
● Unix-ish systems: /etc/hosts
● Windows:
%WINDIR%\System32\drivers\etc\hosts

● Use your favorite programming language



  

Example network protocol
● HTTP, single endpoint
● Requests have plaintext headers, URI-encoded
● Actual body is in a custom binary format
● Each type of request or response has a 16-bit ‘tag’

● For requests, this is the desired function
● For responses, this is the meaning of the contents

● Has a buffer of numbers (byte/short/int), then strings
● Items read in sequential order
● A short in the number buffer can be an offset pointer in the string buffer
● Type information not encoded



  

Structured data format

From my notes at: https://computers.huntertur.net/index.php/Neopets_Mobile

Following some plaintext headers...

https://computers.huntertur.net/index.php/Neopets_Mobile


  

Example: Login request
00000000: 636c 6965 6e74 3d4e 454f 5045 5453 2f32  client=NEOPETS/2

00000010: 2e38 2667 616d 653d 3131 3036 3126 6365  .8&game=11061&ce

00000020: 6e74 6572 3d36 3126 6c61 6e67 7561 6765  nter=61&language

00000030: 3d65 6e0a a001 0000 01a0 0012 0000 0000  =en.............

00000040: 0040 0000 0040 0010 0018 0020 000e 4953  .@...@..... ..IS

00000050: 4f2d 3838 3539 2d31 3b32 2e38 0006 6164  O-8859-1;2.8..ad

00000060: 6164 6164 0006 676a 676a 676a 0000 00ff  adad..gjgjgj....

Login request:
Username: adadad
Password: gjgjgj



  

Example: Login request
00000000: 636c 6965 6e74 3d4e 454f 5045 5453 2f32  client=NEOPETS/2

00000010: 2e38 2667 616d 653d 3131 3036 3126 6365  .8&game=11061&ce

00000020: 6e74 6572 3d36 3126 6c61 6e67 7561 6765  nter=61&language

00000030: 3d65 6e0a a001 0000 01a0 0012 0000 0000  =en.............

00000040: 0040 0000 0040 0010 0018 0020 000e 4953  .@...@..... ..IS

00000050: 4f2d 3838 3539 2d31 3b32 2e38 0006 6164  O-8859-1;2.8..ad

00000060: 6164 6164 0006 676a 676a 676a 0000 00ff  adad..gjgjgj....

Headers: client = NEOPETS/2.8, game = 11061, center = 61, language = en
Tag: 0xa001 Length-based value: 416 (= 8 * (2 + 50))
Number buffer len + 2: 18 Number buffer: (16 bytes)
String buffer: (34 bytes) End of data: 0x00ff



  

Example: Login request
Number buffer:
0000 0000 0040 0000 0040 0010 0018 0020

String buffer:
00 0e ISO-8859-1;2.8
00 06 adadad
00 06 gjgjgj
00 00

(unused constants)

● Offset to encoding string
● Unused constant
● Unused constant
● Offset to username
● Offset to password
● Unused offset to blank string
Developers aren’t perfect!
Don’t stress about unused or constant values



  

Sending our first response
● Take a look over what you’ve discovered so far
● What’s the easiest thing to implement first?
● Always returning a game-recognized error on login?

● Goal: Make the client do something other than 
show a generic network error

● This proves we figured out the basic interface of the API



  

Generic network error



  

Example: Error response
0aa0 0000 0000 4000 0800 0000 2900 0000 ff

Headers: None (newline-terminated)
Tag: 40960 (0xA000) (sync status)
Length-derived value: 64 (= 8 * (2 + 6 + 0))
Number buffer len + 2: 8
Number buffer: 41 (int), pointer to blank string

(41 → user already logged in)
String buffer: just a blank string, so nothing
End of data: 0x00FF



  

Game recognized error
● Even if we semantically 

responded with an error, 
the response itself is valid.

● Therefore, it’s working!



  

Building out the server
● It’s alive!
● Keep analyzing code and renaming symbols to 

understand other API calls’ interfaces
● 80/20 rule: you’ll likely get 80% of the client functional 

by implementing 20% of the API
● Don’t worry about data persistence while 

prototyping



  

Client debugging can suck



  

What next!
● Data persistence
● Let people truly create accounts
● Store their game state on disk



  

Don t let your work go to waste!’
Even if you don’t finish, people would love to see 
what you uncovered!
● Any data specs, even partial, help immensely
● Future people could reference your notes!
● Found unused stuff? Share with tcrf.net
● Consider open-sourcing your new server

https://tcrf.net/The_Cutting_Room_Floor


  

Thanks for coming!
Have any questions after the end of the hour? Contact me here!
● fursona.directory/@LiliaRoo
● FA: hukaulaba
● Weasyl: liliaroo
● Bluesky: @liliaroo.furwaukee.org
● Mastodon: @hukaulaba@transfur.social
● Discord, Telegram: liliaroo
● Email: hukaulaba@gmail.com

mailto:fursona.directory/@LiliaRoo
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