

Reviving Dead
Online Worlds

Lilia Roo
Anthrocon 2025

Sticker © 2021 Recurrent

About Lilia Roo
● Furry since 2018

● Wrote transformation stories!
● Software engineer

● Graduated 2023, but been employed in
industry for 5+ years

● Cut teeth via small FOSS contributions
beforehand

● Maintainer of sewifurs.org since 2021
● Maintainer of Xfburn since 2022
● Developer for Weasyl since 2024

Fursuit by Luno Wroo
Photo by Mallory Gwynn

Problem statement
Online-only
games, or beloved
versions of them,
will go defunct...

...but we can
bring them back
through science!

Outline

Using an example project:
● Decompilation
● Renaming symbols
● Cross-reference code with fan documentation

● Reverse engineering the network protocol
● Writing our new server!

Before you begin!

Every project is different
● Different programming languages
● Different libraries
● Some games are obfuscated
● Some games hate debuggers
● Some games have anti-cheat
● Does fan-written documentation exist?

Our example project

Neopets Mobile
● J2ME, 2006 – 2009
● Developer: In-Fusio
● Could sync progress

with main website
● Only way to access

Lutari Island!

Lutari
Island

Decompilation!
● Used Vineflower

(formerly Quiltflower)
● Bytecode → Source
● Symbols are

obfuscated :(
● This obfuscation uses

normally-invalid duplicate
names!

Decompilation!
● Ask decompiler to

assign everything a
unique name instead

● The exact flag depends
on your tools

● Easier to work with!

Starting renaming

I gotta figure these out? Where do I even begin?
● Look for literal strings in functions
● Mid-method log messages can help greatly

● Look for short, ‘leaf’ functions
● Can more easily give a name based on what it does

● Look for recognizable constants
● Check the game’s wiki; maybe it’s a value for a mechanic

Starting renaming

It’s like a puzzle, and you’re solving it piece-by-piece

Fan documentation helps!

Mystery Island Training School guide
From Jellyneo

Now we can give names to these!

Networking
● Search for URLs, IP addresses, etc.
● Depending on the game, might be read from a config file,

might be hardcoded
● Search for socket read/write
● Depends on language, libraries, etc.

● Look at the call stack and referenced classes
● You found the networking code!

Networking

This game has a hardcoded endpoint

What now?
● Need to figure out how the protocol works

● Is it HTTP? Raw TCP? Raw UDP?
● Is it synchronous request-response? Something else?
● Is there a separate auth step?
● What is the data format?

● Study the decompilation for a bit, taking notes
● To get a real sample, create a simple server that just

reads from the socket and logs requests

Basic server quick notes
● If the game hits a specific domain, route that to

127.0.0.1 via your hosts file
● Unix-ish systems: /etc/hosts
● Windows:
%WINDIR%\System32\drivers\etc\hosts

● Use your favorite programming language

Example network protocol
● HTTP, single endpoint
● Requests have plaintext headers, URI-encoded
● Actual body is in a custom binary format
● Each type of request or response has a 16-bit ‘tag’

● For requests, this is the desired function
● For responses, this is the meaning of the contents

● Has a buffer of numbers (byte/short/int), then strings
● Items read in sequential order
● A short in the number buffer can be an offset pointer in the string buffer
● Type information not encoded

Structured data format

From my notes at: https://computers.huntertur.net/index.php/Neopets_Mobile

Following some plaintext headers...

https://computers.huntertur.net/index.php/Neopets_Mobile

Example: Login request
00000000: 636c 6965 6e74 3d4e 454f 5045 5453 2f32 client=NEOPETS/2

00000010: 2e38 2667 616d 653d 3131 3036 3126 6365 .8&game=11061&ce

00000020: 6e74 6572 3d36 3126 6c61 6e67 7561 6765 nter=61&language

00000030: 3d65 6e0a a001 0000 01a0 0012 0000 0000 =en.............

00000040: 0040 0000 0040 0010 0018 0020 000e 4953 .@...@..... ..IS

00000050: 4f2d 3838 3539 2d31 3b32 2e38 0006 6164 O-8859-1;2.8..ad

00000060: 6164 6164 0006 676a 676a 676a 0000 00ff adad..gjgjgj....

Login request:
Username: adadad
Password: gjgjgj

Example: Login request
00000000: 636c 6965 6e74 3d4e 454f 5045 5453 2f32 client=NEOPETS/2

00000010: 2e38 2667 616d 653d 3131 3036 3126 6365 .8&game=11061&ce

00000020: 6e74 6572 3d36 3126 6c61 6e67 7561 6765 nter=61&language

00000030: 3d65 6e0a a001 0000 01a0 0012 0000 0000 =en.............

00000040: 0040 0000 0040 0010 0018 0020 000e 4953 .@...@..... ..IS

00000050: 4f2d 3838 3539 2d31 3b32 2e38 0006 6164 O-8859-1;2.8..ad

00000060: 6164 6164 0006 676a 676a 676a 0000 00ff adad..gjgjgj....

Headers: client = NEOPETS/2.8, game = 11061, center = 61, language = en
Tag: 0xa001 Length-based value: 416 (= 8 * (2 + 50))
Number buffer len + 2: 18 Number buffer: (16 bytes)
String buffer: (34 bytes) End of data: 0x00ff

Example: Login request
Number buffer:
0000 0000 0040 0000 0040 0010 0018 0020

String buffer:
00 0e ISO-8859-1;2.8
00 06 adadad
00 06 gjgjgj
00 00

(unused constants)

● Offset to encoding string
● Unused constant
● Unused constant
● Offset to username
● Offset to password
● Unused offset to blank string
Developers aren’t perfect!
Don’t stress about unused or constant values

Sending our first response
● Take a look over what you’ve discovered so far
● What’s the easiest thing to implement first?
● Always returning a game-recognized error on login?

● Goal: Make the client do something other than
show a generic network error

● This proves we figured out the basic interface of the API

Generic network error

Example: Error response
0aa0 0000 0000 4000 0800 0000 2900 0000 ff

Headers: None (newline-terminated)
Tag: 40960 (0xA000) (sync status)
Length-derived value: 64 (= 8 * (2 + 6 + 0))
Number buffer len + 2: 8
Number buffer: 41 (int), pointer to blank string

(41 → user already logged in)
String buffer: just a blank string, so nothing
End of data: 0x00FF

Game recognized error
● Even if we semantically

responded with an error,
the response itself is valid.

● Therefore, it’s working!

Building out the server
● It’s alive!
● Keep analyzing code and renaming symbols to

understand other API calls’ interfaces
● 80/20 rule: you’ll likely get 80% of the client functional

by implementing 20% of the API
● Don’t worry about data persistence while

prototyping

Client debugging can suck

What next!
● Data persistence
● Let people truly create accounts
● Store their game state on disk

Don t let your work go to waste!’
Even if you don’t finish, people would love to see
what you uncovered!
● Any data specs, even partial, help immensely
● Future people could reference your notes!
● Found unused stuff? Share with tcrf.net
● Consider open-sourcing your new server

https://tcrf.net/The_Cutting_Room_Floor

Thanks for coming!
Have any questions after the end of the hour? Contact me here!
● fursona.directory/@LiliaRoo
● FA: hukaulaba
● Weasyl: liliaroo
● Bluesky: @liliaroo.furwaukee.org
● Mastodon: @hukaulaba@transfur.social
● Discord, Telegram: liliaroo
● Email: hukaulaba@gmail.com

mailto:fursona.directory/@LiliaRoo

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

